
Axcelerate 5.9.1
Project Setup with Structured
Storage V2

Published: 2016-Dec-05

Contents
1 Project Setup with File-based Storages
1.1 Create an Application for File-based Storages 4
1.1.1 Prerequisites 5
1.1.2 Storage Properties for Projects created with Axcelerate 5.9.1 5

1.2 Storage Handlers in Ingestion 6
1.3 Storage Handlers for Matters 9

2 Storages
2.1 Storages Introduction 11
2.1.1 Order of Storage Handlers 11

2.1.1.1 Configure Storages 11
2.1.1.1.1 Active 11
2.1.1.1.2 Location Persistency 11
2.1.1.1.3 Short Unique ID 12
2.1.1.1.4 Storage backup folder 12
2.1.1.1.5 Storage file type 12
2.1.1.1.6 Storage handler type 13

2.2 SQL-managed Storages 13
2.2.1 Storage Compression 14
2.2.2 Compression, Single-instance Storage and System Performance 14
2.2.3 Enable SQL-managed Storage for all Index Engine Storages 14
2.2.4 Enable SQL-managed Storage where it is Recommended 15
2.2.5 Enable SQL-managed Storage for a Single Storage 15
2.2.6 Migrate File-based Storages to SQL in Axcelerate 5 16

2.2.6.1 What happens during migration? 16
2.2.6.2 How to proceed 16

2.2.7 Configure SQL-managed Storages 18
2.2.7.1 Compress all binary records 18
2.2.7.2 Manage storage sizes in SQL 18
2.2.7.3 System default: Compression support 19

2.3 Primary Storages 19
2.3.1 Configure Primary Storages 20

2.3.1.1 Copy storage items into primary storages during indexing 20
2.4 Single-instance Storage 20
2.4.1 Single-instance Storage Prerequisites 21
2.4.2 Configure Single-instance Storage 21

2.4.2.1 Enable Single-Instance Storage (Automatic Deduplication) 21
2.4.2.2 System default: Single-Instance Storage support (Automatic Deduplication)22

2.5 External Cloning 22
2.5.1 External Cloning Prerequisites 23
2.5.2 Configure External Cloning 23

© Recommind, Inc. 2016.

2

2.5.2.1 Enable external cloning 23
2.5.2.2 System default: support binary cloning 24

2.6 Case-wide Sharing 24
2.6.1 Case-wide Sharing Prerequisites 25
2.6.2 Configure Case-wide Sharing 25

2.6.2.1 Prepare for case-wide sharing 25
2.6.2.2 Sharing between Sub-engines and Review engines 26

2.7 File-based Storage Handler Types 26
2.7.1 Structured Storage V2 26

2.7.1.1 Structured Storage Version 2 Prerequisites 27
2.7.1.2 Configure Storage Root on Master Service 27
2.7.1.2.1 If the master storage is full 28

2.7.1.3 Configure Storage Root for a Project 29
2.7.1.3.1 If the master storage is full 29

2.7.1.4 File Storage Paths for Structured Storage V2 30
2.7.1.4.1 How do I find a specific file? 31

2.7.1.5 Storage Backup 31
2.7.1.6 Configure Structured Storage V2 32
2.7.1.6.1 Copy Settings from Master Service 32
2.7.1.6.2 Storage Root (if not copied from Master Service) 32

2.7.2 Structured Storage 33
2.7.2.1 Configure Structured Storage 33
2.7.2.1.1 Auto generate filename 33
2.7.2.1.2 Folder size limit [in MB] 33
2.7.2.1.3 Limit folder size 34
2.7.2.1.4 Maximum number of files in every leaf directory 34
2.7.2.1.5 Maximum number of subdirectories 34
2.7.2.1.6 Number of directory levels 35
2.7.2.1.7 Storage location 35
2.7.2.1.8 Store relative locations 35

3 Contact Us

4 Terms of Use

© Recommind, Inc. 2016.

3

1 Project Setup with File-based Storages
In Axcelerate 5.9.1, a new structured storage method calledStructured Storage V2 is
available. It comes with project- or pod-wide storage roots for nearly all storages and
offers

diverse file sharing options that reduce storage space.
easy scalability through adding new storage roots when needed.
independent matters. All stored files are accessible from the application, without
dependencies on external sources or other applications.

This new structured storage method is used for new on Premise projects by default.

Note: Projects created in Axcelerate 5.9 or before do not useStructured Stor-
age V2. If you create a new Axcelerate Review & Analysis application from an
updated Axcelerate Ingestion application that does not useStructured Storage
V2 , the new application won't useStructured Storage V2 either.

Structured Storage V2 is available if these templates are used:

For Axcelerate Ingestion application
documentHold.sytemTemplate-Axc5-v2

For Axcelerate Ingestion index engines
singleMindServer.documentHoldSystemTemplate-v3

For aAxcelerate Review & Analysis index engine
singleMindServer.axcelerateStandaloneSystemTemplate-Axc5-v3

1.1 Create an Application for File-based Storages
Usually, the only application you need to create manually, is Axcelerate Ingestion.

1. In CORE Administration, open a workspace and click on its name in the treeview.
2. From the Actions menu, select Create application.

The New Application Wizard opens.
3. In the Define application type step, select Axcelerate Ingestion.
4. In the Define template type step, select System template.
5. In the Define application template step, select either Single engine or Meta

Engine with sub-engines.
6. In the Additional configuration options step, keep the Native storage

options.

7. In the Application details step, enter a unique display name for the application

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 4

and the Client ID and Case Name.

Client ID and Case name are shared with all index engines. They are used for
data storage URIs. The Client ID must not be empty. Keep default if you do not
want to specify a custom Client ID associated with this application.

8. Follow the wizard and finish it.

The Axcelerate Ingestion application is created.

1.1.1 Prerequisites
All index engines using structured storage V2 must have access to the servers host-
ing the master and slave storage roots.

1.1.2 Storage Properties for Projects created with Axcelerate 5.9.1
Storages are file-based. Most storage handlers are structured storage V2 storage
handlers.
Applications use a default central storage root, configured in the CORE master ser-
vice during installation. A custom storage root per project (= Axcelerate Ingestion
with all depending matters) is possible.
Scalability: If the master storage root is full, another storage root can be added and
made the master storage. The previous master storage is made a slave storage,
and stored files can be retrieved and removed from it. New files are added only to
the current master storage.
Stored files are SQL-managed. SQL-management in combination with structured
storage V2 offers:

single instance storage, i.e. file sharing within one storage handler
external cloning, i.e. file sharing between differnt storage handlers.
case-wide sharing of native files
compressed storage of native files, images and redactions

Axcelerate Ingestion and Axcelerate Review & Analysis use primary storages by
default, i.e., deleting an application does not affect other applications using the
same stored files. Also, applications do not use an external storage by default.

What does this mean for native files and images?
Native file copies are created for any type of data loading, including CSV data load.
A reference to these native file copies is added to the Axcelerate Ingestion storage
handler. During publishing, a reference to these native file copies is added to the
Axcelerate Review & Analysis storage handler.
Image copies are imported with CSV load or CSV merge. A reference to these
image copies is added to the respective storage handler. During publishing images
are copied to the Axcelerate Review & Analysis storage handler for images.

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 5

1.2 Storage Handlers in Ingestion
Native files (case-wide)

Structured Storage V2 storage handler. Manages native files copied from source
documents. The storage handler supports sharing items of storage file type Native
files on storage handler, index engine and case level. i.e. between an Axcelerate
Ingestion application and all dependent matters.

Storage handler default settings

Setting Set to Result

Compress all bin-

ary records

System

default

Upon storing, file is compressed to ZIP file,

because the system default activates compression

for storage file type Native files.

Enable external

cloning

System

default

Native files are shared between storage handlers,

because the system default activates compressoin

for storage file type Native files.

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 6

Setting Set to Result

Sharing between

Sub-engines and

Review Engines

On if sup-

ported by

handler

type

The storage handler type is Structured Storage V2.

This handler type allows case-wide sharing.

Images (case-wide)
Structured Storage V2 storage handler. Manages image files copied during CSV
load or CSV merge, or during standard file crawls that use CSV reference files. The
storage handler supports sharing image files with other storage handlers of the
same type between a case’s applications, i.e. between an Axcelerate Ingestion
application and all dependent matters.

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 7

Storage handler default settings

Setting Set to Result

Compress all bin-

ary records

On Upon storing, file is compressed to ZIP file.

Note: If the setting was System default, no

mages would be compressed, as the system

default only allows compression for storage

file type Native files.

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 8

Setting Set to Result

Enable external

cloning

On Image files are shared between storage handlers

Note: If the setting was System default, no

images would be shared, as the system

default only allows external cloning for stor-

age file type Native files.

Sharing between

Sub-engines and

Review Engines

On if sup-

ported by

handler

type

The storage handler type is Structured Storage V2.

This handler type allows case-wide sharing.

Natives_Read_Only
Local storage handler. Manages references to native files. This handler is required
for copying native files to the Native files (case-wide) storage.

Images_Read_Only
Local storage handler. Manages references to images. This handler is required for
copying images to the Images (case-wide) storage.

1.3 Storage Handlers for Matters
Note: If you create productions via script or in the legacy Axcelerate Analysis
module, check the production and OCR text storage paths before the first pro-
duction run. You cannot change storage paths for structured storage or Bates
number storage once they are used for storing files.

Native files (case-wide)
Structured Storage V2 storage handler. Manages native files that were copied dur-
ing ingestion. The storage handler supports compression and case-wide sharing of
native files, i.e. between an Axcelerate Ingestion application and all dependent mat-
ters.

Images (case-wide)
Structured Storage V2 storage handler. Manages image files ingested during CSV
load or CSV merge, or during standard file crawls that use CSV reference files. The
storage handler supports sharing image files with other storage handlers of the

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 9

same type between a case’s applications, i.e. between an Axcelerate Ingestion
application and all dependent matters.

Redactions
Structured Storage V2 storage handler.Manages redactions and annotations
applied to documents during review.

Productions
Bates Number File storage handler. Manages production results created in the
Axcelerate Analysis module or via the manageProduction.bat script. Not
used by production exports or export snapshots that users create in the Axcelerate 5
front end.
Bates Number File storage is a locally configurable structured storage. Locations
can be different between index engines.

OCR Text
Bates Number File storage handler for extracted text files created during pro-
duction. Manages production results created in the Axcelerate Analysis module or
via the manageProduction.bat script. Not used by production exports or
export snapshots that users create in the Axcelerate 5 front end.
Bates Number File storage is a locally configurable structured storage. Locations
can be different between index engines.

Document View files
Structured Storage V2 storage handler. Manages conversion results.
By default, this storage handler does not use compression, nor any type of file shar-
ing. Enabling compression or file sharing would not have any positive effect.

Production export snapshots
Structured Storage V2 storage handler. Manages production export snapshots. By
default, this storage handler is enabled for external cloning, i.e., it can reference nat-
ive files managed by another storage handler.

Production exports
Structured Storage V2 storage handler. Manages production export ZIP files. By
default, this storage handler is enabled for external cloning, i.e. it can use native file
references managed by the production export snapshots storage handler, in order
to copy them to the export ZIP file..

Images_Read_Only
Structured storage handler. Manages references to images. This handler is
required for copying images to the Images storage during a CSV merge.

Natives_Read_Only_from_ECA_<namespace of the first index engine
used for ingestion>

Structured storage handler. This handler is required for copying native files from
Axcelerate Ingestion index engines to the Native files (case-wide), if case-wide
sharing is not active.

© Recommind, Inc. 2016.

1 Project Setup with File-based Storages 10

2 Storages

2.1 Storages Introduction
Several features require that files are stored. This is handled by storage handlers.

Each storage handler is responsible for exactly one storage file type. Storage file types
are, for example, native files, document view files, or production files.

Each storage handler has a storage handler type. It defines the storage properties, and
the access to stored data.

Storages can be managed in an SQL database. SQL-managed storages provide stor-
age metrics and other, optional features.

2.1.1 Order of Storage Handlers
Storage handlers are configured in a specific order which must not be changed. The
order of storage handlers determines how requests for stored files are treated.

The rule for file requests is simple: The storage handler placed higher than others in the
index engine configuration is called first. If, in the document metadata, there is no
access information for this storage handler, the storage handler of the next, lower level
is called.

If there is a wrong access information for a storage handler, the next, lower level is not
called. Each file type has its own storage handlers.

2.1.1.1 Configure Storages
The configuration settings in CORE Administration are shown in alphabetical order.

2.1.1.1.1 Active
Activate to enable this storage handler.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name>

Allowed values:
true
false

Default value:
true

2.1.1.1.2 Location Persistency
Defines whether storage location information is stored with document metadata or in a
document-independent way.

© Recommind, Inc. 2016.

2 Storages 11

Most storages are document-centric and location information is stored with the doc-
ument. But storages for document collections like the production export and production
export snapshots require a specific field for storage location information.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name>

Allowed values:
document-centric
standalone (document-independent)

Default value:
None

2.1.1.1.3 Short Unique ID
The unique ID distinguishes between multiple writable storages for the same storage
file type in one index engine. If there is only one storage for a given file type, this field
can be empty.

The index engine will not start if multiple writable storage handlers for the same storage
file type have the same ID.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Text type definition

Allowed values: any string (a-z or 0-9)

Default value:
None

Related:
"Storage file type" below

2.1.1.1.4 Storage backup folder
Define a backup folder for storage files used during reindexing. The folder must be loc-
ated inside the index engine folder.

Relative file paths are relative to the %MINDSERVER_
PROJECTS%\singleMindServer.<index engine name>\Config folder.

Location: Index engine: Native files > Storage

Allowed values: a file path

Default value:
../storageBackup

2.1.1.1.5 Storage file type
Type of files to be covered by this handler.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name>

© Recommind, Inc. 2016.

2 Storages 12

Allowed values:
Native files
Image files
Production exports
Redaction files
Production files
OCR text
Native files staging
Document view files
Production export snapshots

Default value:
None

2.1.1.1.6 Storage handler type
Select the type of storage.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name>

Allowed values:
Structured Storage V2

Structured Storage
Centera
Original Filename
Custom
Readonly file
Readonly Centera
Bates Number File Storage
Amazon S3 Storage
Readonly Amazon S3 Storage
Readonly Structured Storage V2
Separate text type file

Default value:
None

2.2 SQL-managed Storages
SQL-managed storages provide capabilities for binary data compression, storage item
sharing and storage metrics capture.

SQL management can be set in CORE Administration, but only for newly created pro-
jects that do not contain any documents yet. SQL management can be set for all

© Recommind, Inc. 2016.

2 Storages 13

storages of an index engine, or for individual storage handlers, except for read-only stor-
age handlers.

For each SQL-managed storage, storage metrics capture is automatically enabled.

The database used for storage management is the NGDB database that is installed
with the Recommind software.

2.2.1 Storage Compression
Files can be compressed to ZIP format when they are added to a storage. The com-
pressed files keep the initial file extension, which is needed for file processing.

Storage compression is especially useful for native file storage that often takes a lot of
disk space. Image storage space can also be significantly reduced through com-
pression.

Note: It is not recommended to use compression for storages that contain
already compressed formats, such as XDL or SVG files. This would only lead to
an overhead for the compression process.

2.2.2 Compression, Single-instance Storage and System Per-
formance
Compression and single-instance storage reduce disk space usage considerably, for
native files and for images.

However, they may reduce system performance to some extent. This depends on the
files handled by a storage handler, and on the storage medium.

Some general tests showed that with compression and single-instance storage
enabled, data loading is 5 to 20% slower. Review and document view performance is
maximally 5% slower.

Performance is significantly better when files are stored on SSD (Solid State Drive).

2.2.3 Enable SQL-managed Storage for all Index Engine Storages
Required:

For index engines of an Axcelerate database application: Data have not been
loaded yet.
For index engines of an Axcelerate Review & Analysis application: Data have not
been published yet.

1. In the index engine configuration, open the Native files > Storage node and
enable Manage storage sizes in SQL.

2. If you want to enable compression, for System default: Compression
support, select On.

© Recommind, Inc. 2016.

2 Storages 14

3. If you want to enable single-instance storage, for System default: Single-
Instance Storage support, select On.

4. Make sure that for each storage handler, Compress all binary records and the
Enable Single-Instance Storage are set to System default.

5. Restart the index engine.
6. If there are multiple index engines, do this for every engine.

All storage handlers, except the read-only handlers, use compression and single-
instance storage.

2.2.4 Enable SQL-managed Storage where it is Recommended
The highest benefit of SQL-managed storage is for native file storage. Compression
can also be very useful for redactions. The Auto setting enables SQL management for
these storages, if they use the System default setting.

Required:

For index engines of an Axcelerate database application: Data have not been
loaded yet.
For index engines of an Axcelerate Review & Analysis application: Data have not
been published yet.

To enable SQL-managed storage where it is recommended:

1. In the index engine configuration, open the Native files > Storage node and
enable Manage storage sizes in SQL.

2. If you want to enable compression, for System default: Compression
support, select Auto.

3. If you want to enable single-instance storage, for System default: Single-
Instance Storage support, select Auto.

4. Make sure that for each storage handler, Compress all binary records and the
Enable Single-Instance Storage are set to System default.

5. Restart the index engine.
6. If there are multiple index engines, do this for every engine.

Result:
Compression is active for native storage handlers, except the read-only handlers, and
for redactions. Single-instance storage is active for native storage handlers, except the
read-only handlers.

2.2.5 Enable SQL-managed Storage for a Single Storage
Required:

For index engines of an Axcelerate database application: Data has not been loaded
yet.

© Recommind, Inc. 2016.

2 Storages 15

For index engines of an Axcelerate Review & Analysis application: Data has not
been published yet.

To enable SQL-managed storage for a single item:

1. In the index engine configuration, open the Native files > Storage node and
enable Manage storage sizes in SQL.

2. For the respective storage handler, set Compress all binary records or the
Enable Single-Instance Storage to On.

3. Restart the index engine.
4. If there are multiple index engines, do this for every engine.

Result:
Compression and single-instance storage are active for the storage handler. This over-
rides the system defaults for compression and single-instance storage set in the Native
files > Storage node.

2.2.6 Migrate File-based Storages to SQL in Axcelerate 5
It is possible to migrate storage items to SQL. Usually, this type of migration is only
needed for projects created in Axcelerate 5.5 or earlier. SQL management is enabled
by default for native file storages in Axcelerate 5.6 and later versions.

2.2.6.1 What happens during migration?
During migration, files are copied to a new storage folder, and file metadata is trans-
ferred to the NGDB database. Migration separates the existing storages of Axcelerate
Review & Analysis and Axcelerate Ingestion, i.e., the native file storage previously been
shared exists both in Axcelerate Review & Analysis and Axcelerate Ingestion after
migration.

2.2.6.2 How to proceed
You need to migrate the storages of an Axcelerate Ingestion index engine and the
depending Axcelerate Review & Analysis index engines synchronously. This is due to
the fact that Axcelerate Review & Analysis native file storage references the Axcelerate
Ingestion native file storage.

Important: Synchronous migration means that you have to do each of the
steps detailed below first for Axcelerate Ingestion and then for Axcelerate
Review & Analysis. Only continue with the next step when the preceding step is
finished for all involved index engines.

Note: Users can continue to work with Axcelerate 5 and the Axcelerate Inges-
tion user module during migration.

© Recommind, Inc. 2016.

2 Storages 16

1. Create a new, SQL-managed storage handler in all index
engines
In the index engine configuration, create a new storage handler for native files above all
other native file storage handlers. Specify a new storage location. Enable Manage
storage sizes in SQL for the index engine. Restart the index engine.

2. Copy files from a non-SQL to an SQL-managed storage hand-
ler for all index engines
Make sure that all index engines are correctly configured and restarted.

Copy the files from each involved old storage to the new storage using this script com-
mand:

migratestorage -project <index engine.identifier> [-
host <hostname>] [-port <portNumber]-op copy -
sourceStorageHandlers NATIVE -storageHandlers
NATIVE:<target storage handler name> [-wait] [-
priority <number>] -user <username> -password
<password>

Tip: The optional -wait parameter prompts you when the job is finished. If
you do not use it, go to the Jobs tab to check whether the job is finished.

By default, the job priority is 10. This means it has the same priority as other multiple-
documents jobs.

Example for a script run on the index engine host:

migratestorage -project singleMindserver.minerva -op
copy -sourceStorageHandlers NATIVE -storageHandlers
NATIVE sqlnativestorage -wait -user "Ann Smith" -
password gS93!

This copies the complete storage to the SQL-managed storage handler called sql-
nativestorage.

On the CORE AdministrationJobs tab for the respective application, check that the
copy job is succesfully finished.

3. Remove duplicate storage files for all index engines
To avoid double storage space, remove all files from the source storage that exist in the
target storage using this script command:

migratestorage -project <index engine.identifier> [-
host <hostname>] [-port <portNumber]-op

© Recommind, Inc. 2016.

2 Storages 17

removeFromOutDatedStorage -storageHandlers <NATIVE> -
user <username> -password

Example for a script run on the index engine host:

migratestorage -project singleMindserver.minerva -op
removeFromOutDatedStorage -StorageHandlers NATIVE -
user "Ann Smith" -password gS93!

This removes duplicate files from all storages that are not referenced in the first modi-
fiable storage handler for the same file type. The first modifiable storage is the one that
occurs higher in the storage handler order of the index engine configuration.

4. Check that files in the new storage are accessible
In Axcelerate 5, in the document viewer, click Download to download a native file. If
this works as expected, the new storage is accessible for all documents.

2.2.7 Configure SQL-managed Storages
The configuration settings in CORE Administration are shown in alphabetical order.

2.2.7.1 Compress all binary records
Activates zip compression for every binary data stored with the respective storage hand-
ler. The choice System default configures the storage according to the option System
default: Compression support.
Requires that Manage storage sizes in SQL is enabled.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name>

Allowed values:
System default
Off
On

Default value:
System default

Related:
"System default: Compression support" on the next page

2.2.7.2 Manage storage sizes in SQL
If enabled, storages can be managed in an SQL database. The database supports
single instance storage, compression, and storage metrics capture.

Location: Index engine: Native files > Storage

© Recommind, Inc. 2016.

2 Storages 18

Allowed values:
true
false

Default value:
Axcelerate Ingestion: true for new projects created in version 5.6 or later
Axcelerate Review & Analysis: true for new matters created in version 5.6 or later
Axcelerate ECA & Collection, if not part of Axcelerate 5: false
Decisiv Search: false

2.2.7.3 System default: Compression support
The system-wide default for zip compression of binary storage data. This setting con-
trols how storage handlers with compression set to System default are configured.

Auto enables compression for the storage file type Native files or Redaction files.

Auto also enables compression for the storage file type Images, but only for
structured storage V2 storage handlers.

Requires that Manage storage sizes in SQL is enabled.

Location: Index engine: Native files > Storage

Allowed values:
Auto
On
Off

Default value:
Auto

2.3 Primary Storages
Primary storages make sure that each application has its own, independent native file
and image storages.

With primary storages, an Axcelerate Review & Analysis application is completely inde-
pendent from the Axcelerate Ingestion application from which it was created. Any
stored objects are directly accessible from Axcelerate Review & Analysis, i.e., from the
published matter.

You can remove an Axcelerate Ingestion application without any impact on published
matters.

Applications are also independent from external sources (except if external storages
are explicitly configured). For example, during CSV Load or CSV Merge, binary copies
of referenced native and image files are stored by the application’s storage handlers.

You can remove an external source or deactivate the connection to an external source
without any impact on your project.

© Recommind, Inc. 2016.

2 Storages 19

Note: Primary storage can have different matter publishing results. For
example, if it is combined with case-wide sharing for native files, a reference
count for the respective native files will be added to the NGDB database. If it is
not combined with case-wide sharing for native files, native files will be phys-
ically copied to the native file storage of the Axcelerate Review & Analysis
application. In both cases, links to native files in the published matter will not be
broken when the Axcelerate Ingestion is deleted. Native file storages are com-
pletely independent.

2.3.1 Configure Primary Storages
The configuration settings in CORE Administration are shown in alphabetical order.

2.3.1.1 Copy storage items into primary storages during indexing
During data load, all files referenced in indexed documents (even documents ingested
via CSV Load, or native or image files added via CSV Merge) will be copied into index
engine storages.

During a publish, all files referenced in indexed documents are copied, too, or a ref-
erence count is added to the SQL database, depending on case-wide sharing settings.

This allows direct file access for all applications, independently of other applications or
sources.

Location: Index engine: Native files > Storage

Allowed values:
true
false

Default value:
Applications mainly using Amazon S3 storages: true
Applications mainly using structured storage V2: true
Appications mainly using structured storage: false

2.4 Single-instance Storage
Single-instance storage is used to store identical items only once per storage handler.
Single-instance storage is available for SQL-managed storages.

The system default is set to Auto for the complete storage system. This setting means
that single-instance storage is enabled for items with the storage file type Native files
in writable storages. The storage of these items often takes a lot of disk space, espe-
cially in Axcelerate Ingestion, where usually a lot of duplicates exist.

You can remove the Auto setting for individual storage handlers.

Besides for native files, single instance storage may also be useful for:

© Recommind, Inc. 2016.

2 Storages 20

storage file type Production exports
storage file type Production export snapshots

Single instance storage does not make sense for:

storage file type Image files
storage file type Document view files
storage file type Redaction files
storage file type Production files

You can enable single-instance storage even after ingestion or publishing. The system
then ignores items that were stored before single-instance storage was enabled.

How does single-instance storage work?
For identifying duplicate items, the system uses a SHA-2 hash sum that is calculated
from the binary data. The storage handler only stores the first of the duplicate items.
This item is referenced in the metadata of all documents that use one of the duplicates.

The reference numbers for duplicates are stored in the database, too. Whenever a doc-
ument in a project is deleted, or replaced in a way that the hash sum changes, the num-
ber of duplicates is reduced. The actual item is only removed from the storage if there is
no document with a reference to this item anymore.

Note: Do not confound single-instance storage with document de-duplication
or duplicate detection during publishing. You can use single-instance storage
and, at the same time, publish duplicates.

2.4.1 Single-instance Storage Prerequisites
SQL management is enabled.

Related:
"SQL-managed Storages" on page 13

2.4.2 Configure Single-instance Storage
The configuration settings in CORE Administration are shown in alphabetical order.

2.4.2.1 Enable Single-Instance Storage (Automatic Deduplication)
Activates binary object de-duplication for the respective storage handler. Set to System
default to take over the system default setting for the index engine.

Requires that Manage storage sizes in SQL is enabled.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler name>

© Recommind, Inc. 2016.

2 Storages 21

Allowed values:
Off
On
System default

Default value:
System default

Related:
"System default: Single-Instance Storage support (Automatic Deduplication)" below

2.4.2.2 System default: Single-Instance Storage support (Automatic
Deduplication)
The system-wide default for single-instance storage. This setting controls how storage
handlers with single-instance storage set to System default are configured.

Auto enables single-instance storage automatically for all native file storage handlers
that are no Read-only file storage handlers.

Requires that Manage storage sizes in SQL is enabled.

Location: Index engine: Native files > Storage

Allowed values:
Auto
On
Off

Default value:
Auto

2.5 External Cloning
External cloning is storage item-sharing between storage handlers of a single index
engine.

One example for storage item sharing betwee storage handlers is native file production.
For an item referenced by the Axcelerate Review & Analysis Native files storage
handler, a reference is added to the SQL database when you produce the respective
document.

Without external cloning, the native file would be copied to the production export snap-
shots storage. External cloning saves the time and space needed for file copies that are
only temporary.

Note: External Cloning always includes single instance storage, even if single
instance storage is disabled for a storage handler in the index engine.

© Recommind, Inc. 2016.

2 Storages 22

System default
You can set external cloning per storage handler or use the system default . If the sys-
tem default is set to Auto, external cloning is enabled for these storage handlers:

Sharing of storage file type Native

Native files

Native files staging

Production files
Production export snapshots
Production exports (Uses references of production export snapshots to create nat-
ive file copies that should occur in the export ZIP file.)

When is external cloning for images recommended?

If images are imported via CSV features. External cloning is the prerequisite for

case-, wide sharing. If you want to publish images from Axcelerate Ingestion, you

need case-wide sharing, and therefore external cloning.

If imported images are used for production export.

2.5.1 External Cloning Prerequisites
SQL-management is enabled for storages.
Storage handler type is Structured Storage V2.
Storage file types are identical.

2.5.2 Configure External Cloning
The configuration settings in CORE Administration are shown in alphabetical order.

2.5.2.1 Enable external cloning
Activates external binary object cloning: if an object is cloned (duplicated) from one stor-
age to another, only one of them will be stored (with some reference mechanism for the
other). This requires managed SQL locations. The choice 'System default' configures
the storage according to the option 'System default: support binary cloning' (see
above). For read-only handlers, the choice 'System default' expands to 'Off'.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler name>

© Recommind, Inc. 2016.

2 Storages 23

Allowed values:
System default
On
Off

Default value:
On

2.5.2.2 System default: support binary cloning
The system-wide default for external cloning of binary streams, i.e. among different stor-
age handlers. This setting controls how storage handlers with 'Enable external clon-
ing=System default' are configured. Enabling this allows algorithms to use clones in
order to reduce storage costs. This requires managed SQL locations. The choice 'Auto'
enables the feature for storages of file types Native, Native files staging, production, pro-
duction export snapshots, and ocr."

Location: Document model/Application/Index engine/Data source: (Insert one of the
menuitem snippets.)

Allowed values:
Auto
On
Off

Default value:
Auto

2.6 Case-wide Sharing
Case-wide sharing is storage item sharing between storage handlers of an Axcelerate
Ingestion application and all dependent matters.

Stored items are stored once. For each occurrence in the project, one reference to the
stored item is added to the SQL database.

Case-wide sharing requires that external cloning is enabled, which automatically
includes single-instance storage.

Example: Native files and case-wide sharing

A native file is copied during ingestion. This creates an entry in the SQL database with

one reference.

A duplicate file is loaded. This augments the reference count to two.

© Recommind, Inc. 2016.

2 Storages 24

The corresponding documents are published. This augments the reference count to

four.

Both documents are part of the production export snapshot. This augments the ref-

erence count to six.

Both documents are part of the production export. As production exports automatically

delete the corresponding snapshots, the reference count goes down to four.

2.6.1 Case-wide Sharing Prerequisites
SQL-management is enabled for storages.
Storage handler type is Structured Storage V2.
Storage file types are identical.
External cloning is active.

2.6.2 Configure Case-wide Sharing
The configuration settings in CORE Administration are shown in alphabetical order.

2.6.2.1 Prepare for case-wide sharing
If this option is active, a storage handler is prepared for case-wide sharing.

Setting this option to active replaces the Engine ID with shared in the S3 base URI or
with casewidefile in the the Structured storage V2 URI.

Note that Prepare for case-wide sharing alone merely prepares the paths; it does
not share records.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> Amazon S3 Storage (or Structured storage V2)

Allowed values:
On
Off
Auto (sets option to On, but only for storages with storage file type Native files and
Image files).

Default value:
On

© Recommind, Inc. 2016.

2 Storages 25

2.6.2.2 Sharing between Sub-engines and Review engines
Applies binary deduplication on case-level: items inserted into one sub-engine or one
review-engine are deduplicated among all engines belonging to the case.

Only available if Enable external cloning is active.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler name>

Allowed values:
On if supported by handler type
Off

Default value:
On if supported by handler type

2.7 File-based Storage Handler Types

2.7.1 Structured Storage V2
Structured storage V2 is a file-based structured storage that can be shared across
index engines.

Each storage handler using structured storage V2 has a Structured Storage V2
node.

Note: Do not modify this node. Filepaths are automatically set, and the folder
structure is automatically adapted, if needed.

A structured storage is a folder on a file system. The root folder contains a sub-folder
structure that depends on how files are shared. Below this structure, there is the actual
structured storage with generated folder and file names.The folder structure is numeric,
e.g., folder names are 000, 001, 002, sub-folder names are also 000, 001,002 etc. For
structured storage V2, this structure is automatically enlarged if the default number of
folders is not sufficient. It is not configurable.

As the same storage root must be used by all Structured Storage V2 storage hand-
lers, these storage handlers use common settings.

You find them in the index engine configuration, in the Native files > Storage > File-
based Storage node.

When you create an Axcelerate Review & Analysis application for a matter, it takes over
the settings made for Axcelerate Ingestion.

One of the big advantages of structured storage V2 is scalability. You can easily add
another storage root for additional storage space.

© Recommind, Inc. 2016.

2 Storages 26

2.7.1.1 Structured Storage Version 2 Prerequisites
All index engines using structured storage V2 have access to the servers hosting
the respective storage roots.
The Shared Client ID and Shared Case Name must be identical for all applic-
ations and index engines of a project, i.e. for an Axcelerate Ingestion application and
all dependent matters. None of the must be empty. They may not be changed once
ingestion has started.

2.7.1.2 Configure Storage Root on Master Service
Required:

The storage root folder has been created.

To configure the storage root on the master service:

1. On the master service host, run mindserver.bat in a command prompt.
2. From the Project menu, select Service.
3. Click the Common button.

4. In the File-based Storage (Structured Storage V2) section, you see the loc-
ation path structure.

Tip: If you don't see the Storage Root table below, enlarge the Window
size.

© Recommind, Inc. 2016.

2 Storages 27

5. In the Storage Root table, change the Master according to your needs and click
Apply.

This is the storage root used for structured storage V2.

Note: There may be a slave storage, too. This slave storage may result
from updated projects or installation. It is used for the other, non-V2 struc-
tured storage type that may still be required. Leave this entry as it is.

6. If index engines have already been started, right-click the document models in
CORE Administration and select Reload index configuration.

2.7.1.2.1 If the master storage is full
If there is little space left in the master storage, create a new one. Do not delete the old
one, but make it slave storage.

Required:

There is no active process writing to storages.
The new storage root folder has been created.

If the master storage is full, proceed as follows:

© Recommind, Inc. 2016.

2 Storages 28

1. In the Storage Root table, in the Usage column, select Slave for the full stor-
age.

Caution: Never delete full storage root rows! This will cut the access to
the stored files.

2. Click Add row.

This automatically adds a new Master row.

3. Enter the path to the new storage root in the Directory column.
4. Click Apply.
5. In CORE Administration right-click the document models of all index engines that

use the master service storage root and select Reload index configuration.

Result: New files are stored to the new master storage root from now on. Existing files
can still be read or deleted from all slave storages.

2.7.1.3 Configure Storage Root for a Project
If you want to use a master storage root for a single Axcelerate Ingestion and all its
dependent matters, configure it in the Axcelerate Ingestion index engines.

Required:

The storage root folder has been created.

To configure the storage root for a single project:

1. In CORE Administration, click an index engine and, from the Actions menu,
select Configure.

2. Navigate to the Native files > Storage > File-based Storage node.
3. Deactivate the Copy Settings from Master Service check box.

4. In the Storage Root section, click the Master row and modify the path to the stor-
age rot as needed.

Note: There may be a slave storage, too. This slave storage may result
from updated projects or installation. It is used for the other, non-V2 struc-
tured storage type that may still be required. Leave this entry as it is.

5. Click OK.
6. Do this for all Axcelerate Ingestion index engines.
7. Right-click the document model and select Reload index configuration.

To configure the storage root on the master service:

2.7.1.3.1 If the master storage is full
If there is little space left in the master storage, create a new one. Do not delete the old
one, but make it slave storage.

© Recommind, Inc. 2016.

2 Storages 29

Required:

There is no active process writing to storages.
The new storage root folder has been created.

If the master storage is full, proceed as follows:

1. In the Storage Root table, in the Usage column, select Slave for the full stor-
age.

Caution: Never delete full storage root rows! This will cut the access to
the stored files.

2. Click Add row.

This automatically adds a new Master row.

3. Enter the path to the new storage root in the Directory column.
4. Click OK.
5. Right-click the document model and select Reload index configuration.

Result: New files are stored to the new master storage root from now on. Existing files
can still be read or deleted from all slave storages.

2.7.1.4 File Storage Paths for Structured Storage V2
The storage paths follow this pattern:

<storage root>\<client id>\<case name>\<unique
ID>\<storage file type>\<generated filepath including
a timestamp>

Example for a storage without case-wide sharing

\\myserver\c:\McMuster\MCMvsDE\minerva\DOCUMENT_

VIEWS_default_\2016-10-18_17.36.19.907\0\0\0.pdf

This is a path to a document view file handled by index engine sin-

glemindserver.minerva. The document view files storage handler does not use

case-wide sharing.

Example for a storage enabled for case-wide sharing

\\myserver\c:\McMuster\MCMvsDE\casewidefile\NATIVE_

default_\2016-10-18_17.36.19.907\0\0\0.doc

© Recommind, Inc. 2016.

2 Storages 30

This is a path to a native file. By default, native file storage handlers use case-wide shar-

ing. Instead of the index engine name, you see casewidefile as unique ID. This is the

default name. The name is arbitrary.

2.7.1.4.1 How do I find a specific file?
In the document metadata, you only see the native file type and the generated filepath
for the respective file, e.g., NATIVE_default_\2016-10-18_
17.36.19.907\0\0\0.doc.

To find the first part of the path look up these entries:

Storage root
In the index engine configuration, see Native files > Storage > File-based
Storage.
The master in the Storage Root list shows either the master service settings or the
storage root used for a single .Axcelerate Ingestion application with dependent mat-
ters.

Tip: If your project has slave storage roots, the file may be located in one of
them, or in the master storage root.

Shared case name
In the index engine configuration, see Common > Project parameters

Shared Client Identifier
In the index engine configuration, see Common > Project parameters

Short Unique ID
In the index engine configuration, see Native files > Storage > Storage handler
> <storage handler name>

Note: From the file extension, you cannot tell whether a file is compressed or
not. Compression keeps the original extension, although the compressed file is
a ZIP file. To access the file from the file system, copy it to a place outside the
storage and replace the extension with zip.

2.7.1.5 Storage Backup
Required:

Index engines are stopped.

To run the backup:

© Recommind, Inc. 2016.

2 Storages 31

1. Backup the SQL database.
2. Backup the complete storage, i.e., master and slave storages.
3. Backup the other storages that do not use the master storage root, i.e., that do

not use structured storage V2.

2.7.1.6 Configure Structured Storage V2
The configuration settings in CORE Administration are shown in alphabetical order.

2.7.1.6.1 Copy Settings from Master Service
Defines where to read and write files. The table can contain more than one storage root
in order to handle the case of full drives. The document's XML will contain locations rel-
ative to the base URI (see above for a definition of the base URI).

Location: Index engine: Native files > File-based Storage

Allowed values:
true
false

Default value:
true

2.7.1.6.2 Storage Root (if not copied from Master Service)
Defines where to read and write files. The table can contain more than one storage root
in order to handle the case of full drives. The document's XML will contain locations rel-
ative to the base URI (see above for a definition of the base URI).

Location: Index engine: Native files > File-based Storage

Directory
The base directory for all storages of type Structured Storage V2. Must be accessible
from all hosts

Allowed values: absolute path to storage root

Default value:
none

Usage
Defines how to use the path. There can be at most one item with Master; it will be used
to store new records.

© Recommind, Inc. 2016.

2 Storages 32

Allowed values:
Master (writable storage root)
Slave (storage root from where items can be read or removed)

Default value:
Master

2.7.2 Structured Storage

Note: Do not confound structured storage and structured storage V2. They are
both file-based, but behave differently.

A structured storage is a folder on a file system. It is configured per storage handler.

The path to the structured storage folder is defined per index engine. Sharing between
index engines is not possible.

Below the handler's root folder, there is an additional storage folder level for the struc-
tured storage. The name is generated from a time stamp (yyyy-mm-dd_hh-mm-ss-
ms). This folder is created when storing the first document in the storage. The name is
generated when the index engine starts. It uses the time the index engine starts. With
each restart a new time stamp folder is generated. All files are saved in the configurable
subfolder structure below this folder.

2.7.2.1 Configure Structured Storage
The configuration settings in CORE Administration are shown in alphabetical order.

2.7.2.1.1 Auto generate filename
If active, the stored files are numbered consecutively. Otherwise, a name must be
provided.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values:
true
false

Default value:
true

2.7.2.1.2 Folder size limit [in MB]
Enter the maximum size for first-level-folders in Megabyte.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

© Recommind, Inc. 2016.

2 Storages 33

Allowed values: 0 – 2147483647

Default value:
None

2.7.2.1.3 Limit folder size
If active, the system checks for each first-level folder that the content does not grow bey-
ond the configured limit.

Tip: You can use this feature to make sure you can store each folder on a
medium of a certain capacity. For example, set a limit to not exceed the size of a
DVD.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values:
true
false

Default value:
false

2.7.2.1.4 Maximum number of files in every leaf directory
Maximum number of files that are stored in each leaf folder.

For example, a storage with two folder levels, maximum 100 subfolders and maximum
1000 files can store up to 100*100*1,000=10,000,000 files.

Tip: Some file systems become slow if there are two many files in a folder. This
will impact your system performance. Choose these values with the limitations
of your file system in mind.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values: 100 – 10,000

Default value:
1,000

2.7.2.1.5 Maximum number of subdirectories
Maximum number of subfolders that are created in every folder.

For example, when set to two levels with maximum 100 subfolders the storage handler
creates the folders <storagedir>\0\0\ to <storagedir>\99\99\. Together
with Maximum number of files in every leaf directory this defines the maximum
number of files the storage handler can store.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

© Recommind, Inc. 2016.

2 Storages 34

Allowed values: 1 – 1000

Default value:
100

2.7.2.1.6 Number of directory levels
Number of folder levels that are created below the storage directory.

For example a value of 2 will create the path <storagedir>\0\0\0.doc for the
first document.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values: 0 – 50

Default value:
2

2.7.2.1.7 Storage location
This is the location where the files will be stored.

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values: a relative or absolute path to a folder in operating system or UNC
notation

Default value:
path name generated during application creation

2.7.2.1.8 Store relative locations
Activate if relative locations shall be stored. The storage location is relative to the path
stated above. For each storage location the part following the absolute base path is per-
sisted, e.g. 0\0\0.doc

Location: Index engine: Native files > Storage > Storage handler > <storage
handler instance name> > Structured storage with generated filenames

Allowed values:
true
false

Default value:
true

© Recommind, Inc. 2016.

2 Storages 35

3 Contact Us

About Recommind
Recommind provides the most accurate and automated enterprise search, automatic
classification, and eDiscovery software available, giving organizations and their users
the information they need when they need it.

Visit us at http://www.recommind.com.

Support
For support issues on Recommind products, visit the Recommind Ticketing System at
https://rts.recommind.com.

Documentation
Find Recommind product documentation, Knowledge Base articles, and more inform-
ation at the Recommind Customer Portal at https://supportkb.recommind.com. For
login access to the site, contact your product support:

For : SearchSupport@recommind.com
For : eDiscoverySupport@recommind.com

The Recommind Documentation team is interested in your feedback.

For comments or questions about Recommind product documentation, contact us at
documentation@recommind.com.

© Recommind, Inc. 2016.

3 Contact Us 36

http://www.recommind.com/
https://rts.recommind.com/
https://supportkb.recommind.com/
mailto:SearchSupport@recommind.com?subject=Link to Recommind Customer Portal
mailto:eDiscoverySupport@recommind.com
mailto:documentation@recommind.com?subject=Documentation Request

4 Terms of Use

Disclaimer
This document, as well as the products and services described in it, is furnished under
license and may only be used or copied in accordance with the terms of the license. The
information in this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Recommind, Inc.,
including its affiliates and subsidiaries (collectively, "Recommind"). Recommind
assumes no responsibility or liability for any errors or inaccuracies that may appear in
this document or any software or services that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means without the
express written consent of Recommind. Information in this document is provided in con-
nection with Recommind's products and services. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document.

EXCEPT AS PROVIDED IN RECOMMIND’S SOFTWARE LICENSE AGREEMENT
OR SERVICES AGREEMENT FOR SUCH PRODUCTS OR SERVICES,
RECOMMIND ASSUMES NO LIABILITY WHATSOEVER, AND RECOMMIND
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF RECOMMIND PRODUCTS OR SERVICES INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. RECOMMIND
MAKES NO WARRANTIES REGARDING THE COMPLETENESS OR ACCURACY
OF ANY INFORMATION, NOR THAT THE PRODUCTS OR SERVICES WILL BE
ERROR FREE, UNINTERRUPTED, OR SECURE. IN NO EVENT WILL
RECOMMIND, THEIR DIRECTORS, EMPLOYEES, SHAREHOLDERS AND
LICENSORS, BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT,
SPECIAL OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS
OF ANTICIPATED PROFITS OR BENEFITS.

Recommind may make changes to specifications, and product and service descriptions
at any time, without prior notice. Recommind's products may contain design defects or
errors known as errata that may cause the product or service to deviate from published
specifications. Current characterized errata are available on request. Whilst every effort
has been made to ensure that the information and content within this document is accur-
ate, up-to-date and reliable, Recommind cannot be held responsible for inaccuracies or
errors. Recommind software, services and documentation have been developed and
prepared with the appropriate degree of skill, expertise and care. While every effort has
been made to ensure that this documentation contains the most up-to-date and accur-
ate information available, Recommind accepts no responsibility for any damage that
may be claimed by any user whatsoever for the specifications, errors or omissions in the
use of the products, services and documentation.

© Recommind, Inc. 2016.

4 Terms of Use 37

Trademarks and Patents
Recommind's underlying technology is patented underU.S. Patent Nos. 6,687,696,
7,328,216, 7,657,522, 7,747,631, 7,933,859, 8,024,333, 8,103,678, 8,429,159 and
8,489,538

Recommind, Inc. is the leader in predictive information management and analysis soft-
ware, delivering business applications that transform the way enterprises, government
entities and law firms conduct eDiscovery, enterprise search, and information gov-
ernance. Recommind, Axcelerate, Axcelerate Cloud, Axcelerate OnDemand, and
CORE’s name and logo are registered trademarks of Recommind, Inc.

Copyright
Copyright © Recommind, Inc. 2000-2016.

© Recommind, Inc. 2016.

4 Terms of Use 38

	1 Project Setup with File-based Storages
	1.1 Create an Application for File-based Storages
	1.1.1 Prerequisites
	1.1.2 Storage Properties for Projects created with Axcelerate 5.9.1

	1.2 Storage Handlers in Ingestion
	1.3 Storage Handlers for Matters

	2 Storages
	2.1 Storages Introduction
	2.1.1 Order of Storage Handlers
	2.1.1.1 Configure Storages
	2.1.1.1.1 Active
	2.1.1.1.2 Location Persistency
	2.1.1.1.3 Short Unique ID
	2.1.1.1.4 Storage backup folder
	2.1.1.1.5 Storage file type
	2.1.1.1.6 Storage handler type

	2.2 SQL-managed Storages
	2.2.1 Storage Compression
	2.2.2 Compression, Single-instance Storage and System Performance
	2.2.3 Enable SQL-managed Storage for all Index Engine Storages
	2.2.4 Enable SQL-managed Storage where it is Recommended
	2.2.5 Enable SQL-managed Storage for a Single Storage
	2.2.6 Migrate File-based Storages to SQL in Axcelerate 5
	2.2.6.1 What happens during migration?
	2.2.6.2 How to proceed

	2.2.7 Configure SQL-managed Storages
	2.2.7.1 Compress all binary records
	2.2.7.2 Manage storage sizes in SQL
	2.2.7.3 System default: Compression support

	2.3 Primary Storages
	2.3.1 Configure Primary Storages
	2.3.1.1 Copy storage items into primary storages during indexing

	2.4 Single-instance Storage
	2.4.1 Single-instance Storage Prerequisites
	2.4.2 Configure Single-instance Storage
	2.4.2.1 Enable Single-Instance Storage (Automatic Deduplication)
	2.4.2.2 System default: Single-Instance Storage support (Automatic Deduplication)

	2.5 External Cloning
	2.5.1 External Cloning Prerequisites
	2.5.2 Configure External Cloning
	2.5.2.1 Enable external cloning
	2.5.2.2 System default: support binary cloning

	2.6 Case-wide Sharing
	2.6.1 Case-wide Sharing Prerequisites
	2.6.2 Configure Case-wide Sharing
	2.6.2.1 Prepare for case-wide sharing
	2.6.2.2 Sharing between Sub-engines and Review engines

	2.7 File-based Storage Handler Types
	2.7.1 Structured Storage V2
	2.7.1.1 Structured Storage Version 2 Prerequisites
	2.7.1.2 Configure Storage Root on Master Service
	2.7.1.2.1 If the master storage is full

	2.7.1.3 Configure Storage Root for a Project
	2.7.1.3.1 If the master storage is full

	2.7.1.4 File Storage Paths for Structured Storage V2
	2.7.1.4.1 How do I find a specific file?

	2.7.1.5 Storage Backup
	2.7.1.6 Configure Structured Storage V2
	2.7.1.6.1 Copy Settings from Master Service
	2.7.1.6.2 Storage Root (if not copied from Master Service)

	2.7.2 Structured Storage
	2.7.2.1 Configure Structured Storage
	2.7.2.1.1 Auto generate filename
	2.7.2.1.2 Folder size limit [in MB]
	2.7.2.1.3 Limit folder size
	2.7.2.1.4 Maximum number of files in every leaf directory
	2.7.2.1.5 Maximum number of subdirectories
	2.7.2.1.6 Number of directory levels
	2.7.2.1.7 Storage location
	2.7.2.1.8 Store relative locations

	3 Contact Us
	4 Terms of Use

